Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide
نویسندگان
چکیده
Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the 'Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ∼300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure-property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.
منابع مشابه
Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide.
As a common type of structural defect, grain boundaries (GBs) play an important role in tailoring the physical and chemical properties of bulk crystals and their two-dimensional (2D) counterparts such as graphene and molybdenum disulfide (MoS2). In this study, we explore the atomic structures and dynamics of three kinds of high-symmetry GBs (α, β and γ) in monolayer MoS2. Atomic-resolution tran...
متن کاملMisorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron micros...
متن کاملThe electronic structure and optical properties of Mn and B, C, N co-doped MoS2 monolayers
The electronic structure and optical properties of Mn and B, C, N co-doped molybdenum disulfide (MoS2) monolayers have been investigated through first-principles calculations. It is shown that the MoS2 monolayer reflects magnetism with a magnetic moment of 0.87 μB when co-doped with Mn-C. However, the systems co-doped with Mn-B and Mn-N atoms exhibit semiconducting behavior and their energy ban...
متن کاملCoulomb blockade in monolayer MoS2 single electron transistor.
Substantial effort has been dedicated to understand the intrinsic electronic properties of molybdenum disulfide (MoS2). However, electron transport study on monolayer MoS2 has been challenging to date, especially at low temperatures due to large metal/semiconductor junction barriers. Herein, we report the fabrication and characterization of the monolayer MoS2 single-electron transistor. High pe...
متن کاملHigh-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits.
Two-dimensional (2D) layered semiconductors are very promising for post-silicon ultrathin channels and flexible electronics due to the remarkable dimensional and mechanical properties. Besides molybdenum disulfide (MoS2), the first recognized 2D semiconductor, it is also important to explore the wide spectrum of layered metal chalcogenides (LMCs) and to identify possible compounds with high per...
متن کامل